Universality in the three-dimensional random-field Ising model.

نویسندگان

  • Nikolaos G Fytas
  • Víctor Martín-Mayor
چکیده

We solve a long-standing puzzle in statistical mechanics of disordered systems. By performing a high-statistics simulation of the D=3 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute the complete set of critical exponents for this class, including the correction-to-scaling exponent, and we show, to high numerical accuracy, that scaling is described by two independent exponents. Discrepancies with previous works are explained in terms of strong scaling corrections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

Thermal critical behavior and universality aspects of the three-dimensional random-field Ising model

The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete (±∆) distribution, and we study the model for v...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

Scaling and super-universality in the coarsening dynamics of the 3D random field Ising model

We study the coarsening dynamics of the three-dimensional random field Ising model using Monte Carlo numerical simulations. We test the dynamic scaling and super-scaling properties of global and local two-time observables. We treat in parallel the three-dimensional Edward–Anderson spin glass and we recall results on Lennard-Jones mixtures and colloidal suspensions to highlight the common and di...

متن کامل

Universality in three dimensional random-field ground states

We investigate the critical behavior of three-dimensional random-field Ising systems with both Gauss and bimodal distribution of random fields and additional the three-dimensional diluted Ising antiferromagnet in an external field. These models are expected to be in the same universality class. We use exact ground-state calculations with an integer optimization algorithm and by a finite-size sc...

متن کامل

Universality in three dimensional random-

We investigate the critical behavior of three-dimensional random-field Ising systems with both Gauss and bimodal distribution of random fields and additional the three-dimensional diluted Ising antiferromagnet in an external field. These models are expected to be in the same universality class. We use exact ground-state calculations with an integer optimization algorithm and by a finite-size sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 110 22  شماره 

صفحات  -

تاریخ انتشار 2013